Effects of sugar on vegetative development and floral transition in Arabidopsis.
نویسندگان
چکیده
Although sugar has been suggested to promote floral transition in many plant species, growth on high concentrations (5% [w/v]) of sucrose (Suc) significantly delayed flowering time, causing an increase in the number of leaves at the time of flowering in Arabidopsis. The effect of high concentrations of Suc seemed to be metabolic rather than osmotic. The delay of floral transition was due to extension of the late vegetative phase, which resulted in a delayed activation of LFY expression. In addition, growth on low concentrations (1% [w/v]) of Suc slightly inhibited flowering in wild-type plants. This delay resulted from effects on the early vegetative phase. This inhibition was more pronounced in tfl1, an early flowering mutant, than in the wild type. Although 1% (w/v) Suc was reported to promote floral transition of late-flowering mutants such as co, fca, and gi, floral transition in these mutants was delayed by a further increase in Suc concentration. These results suggest that sugar may affect floral transition by activating or inhibiting genes that act to control floral transition, depending on the concentration of sugars, the genetic background of the plants, and when the sugar is introduced. Growth on 1% (w/v) Suc did not restore the reduced expression levels of FT and SOC1/AGL20 in co or fca mutants. Rather, expression of FT and SOC1/AGL20 was repressed by 1% (w/v) Suc in wild-type background. The possible effects of sugar on gene expression to promote floral transition are discussed.
منابع مشابه
Deciphering the Arabidopsis floral transition process by integrating a protein-protein interaction network and gene expression data.
In a plant, the progression from vegetative growth to reproductive growth is called the floral transition. Over the past several decades, the floral transition has been shown to be determined not by a single gene but by a complicated gene network. This important biological process, however, has not been investigated at a genome-wide network level. We collected Arabidopsis (Arabidopsis thaliana)...
متن کاملOverexpression of Medicago SVP genes causes floral defects and delayed flowering in Arabidopsis but only affects floral development in Medicago
The MADS-domain transcription factor SHORT VEGETATIVE PHASE plays a key role as a repressor of the transition to flowering and as a regulator of early floral development in Arabidopsis thaliana (Arabidopsis). However, no flowering-time repressors have been functionally identified in the model legume Medicago truncatula (Medicago). In this study, phylogenetic analysis of two closely-related MtSV...
متن کاملThe effect of the floral repressor FLC on the timing and progression of vegetative phase change in Arabidopsis.
Plants undergo two major post-embryonic developmental transitions--the juvenile-to-adult vegetative transition (vegetative phase change) and the adult-to-reproductive transition (flowering). In woody plants, these transitions can be separated by years, but in herbaceous species they are often very close together, making it difficult to differentiate the effects of vegetative phase change and fl...
متن کاملThe rice StMADS11-like genes OsMADS22 and OsMADS47 cause floral reversions in Arabidopsis without complementing the svp and agl24 mutants
During floral induction and flower development plants undergo delicate phase changes which are under tight molecular control. MADS-box transcription factors have been shown to play pivotal roles during these transition phases. SHORT VEGETATIVE PHASE (SVP) and AGAMOUS LIKE 24 (AGL24) are important regulators both during the transition to flowering and during flower development. During vegetative...
متن کاملSmall RNA-Sequencing Links Physiological Changes and RdDM Process to Vegetative-to-Floral Transition in Apple
Transition from vegetative to floral buds is a critical physiological change during flower induction that determines fruit productivity. Small non-coding RNAs (sRNAs) including microRNAs (miRNAs) and small interfering RNAs (siRNAs) are pivotal regulators of plant growth and development. Although the key role of sRNAs in flowering regulation has been well-described in Arabidopsis and some other ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 127 1 شماره
صفحات -
تاریخ انتشار 2001